Abstract
In this paper, we present a wavelet collocation method for efficiently solving singularly perturbed differential–difference equations (SPDDEs) and one-parameter singularly perturbed differential equations (SPDEs) taking into account the singular perturbations inherent in control systems. These equations represent a class of mathematical models that exhibit a combination of differential and difference equations, making their analysis and solution challenging. The terms that include negative and positive shifts were approximated using Taylor series expansion. The main aim of this technique is to convert the problems by using operational matrices of integration of Haar wavelets into a system of algebraic equations that can be solved using Newton’s method. The adaptability and multi-resolution properties of wavelet functions offer the ability to capture system behavior across various scales, effectively handling singular perturbations present in the equations. Numerical experiments were conducted to showcase the effectiveness and accuracy of the wavelet collocation method, demonstrating its potential as a reliable tool for analyzing and solving SPDDEs in control system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.