Abstract

We develop a general notion of orthogonal wavelets ‘centered’ on an irregular knot sequence. We present two families of orthogonal wavelets that are continuous and piecewise polynomial. We develop efficient algorithms to implement these schemes and apply them to a data set extracted from an ocelot image. As another application, we construct continuous, piecewise quadratic, orthogonal wavelet bases on the quasi-crystal lattice consisting of the $$\tau $$ -integers where $$\tau $$ is the golden ratio. The resulting spaces then generate a multiresolution analysis of $$L^2(\mathbf {R})$$ with scaling factor $$\tau $$ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.