Abstract

In order to avoid the sharps and transients of power demand and extend the battery lifetime, three energy management strategies via wavelet transform (WT) considering temperature uncertainty for hybrid energy storage system (HESS) in the plug-in hybrid electric vehicle are proposed in this paper. The HESS consisting of batteries, ultracapacitors, along with two associated DC/DC converters is discussed and modeled in details. In addition, to further investigate the influence of temperature uncertainty, a random temperature variation and three-dimensional response surfaces are employed for modeling. To systematically compare the performances of WT-based (WTB) strategy, WT-and-rule-based (WTRB) strategy and WT-and fuzzy-logic-control-based (WTFLCB) strategy, an optimization scheme is presented directly. The simulation results demonstrate that the WTFLCB strategy shows better performance under temperature uncertainty. Moreover, a hardware in the loop experiment platform is set up to further verify the feasibility of the WTRB strategy for actual application. It is found that the battery SoC and ultracapacitor SoC estimation errors are less than 0.77% and 3.87%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.