Abstract

ABSTRACTRisk of investing in a financial asset is quantified by functionals of squared returns. Discrete time stochastic volatility (SV) models impose a convenient and practically relevant time series dependence structure on the log-squared returns. Different long-term risk characteristics are postulated by short-memory SV and long-memory SV models. It is therefore important to test which of these two alternatives is suitable for a specific asset. Most standard tests are confounded by deterministic trends. This paper introduces a new, wavelet-based, test of the null hypothesis of short versus long memory in volatility which is robust to deterministic trends. In finite samples, the test performs better than currently available tests which are based on the Fourier transform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.