Abstract

This paper is concerned with detecting the presence of switching behavior in experimentally obtained posturographic data sets by means of a novel algorithm that is based on a combination of wavelet analysis and Hilbert transform. As a test-bed for the algorithm, we first use a switched model of human balance control during quiet standing with known switching behavior in four distinct configurations. We obtain a time–frequency representation of a signal generated by our model system. We are then able to detect manifestations of discontinuities (switchings) in the signal as spiking behavior. The frequency of switchings, measured by means of our algorithm and detected in our models systems, agrees with the frequency of spiking behavior found in the experimentally obtained posturographic data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.