Abstract

A wavelength selective wideband uncooled infrared (IR) sensor that detects middle-wavelength and long-wavelength IR (MWIR and LWIR) regions has been developed using a two-dimensional plasmonic absorber (2-D PLA). The 2-D PLA has a Au-based 2-D periodic dimple-array structure, where photons can be manipulated using a spoof surface plasmon. Numerical investigations demonstrate that the absorption wavelength can be designed according to the surface period of dimples over a wide wavelength range (MWIR and LWIR regions). A microelectromechanical system-based uncooled IR sensor with a 2-D PLA was fabricated using complementary metal oxide semiconductor and micromachining techniques. Measurement of the spectral responsivity shows that the selective enhancement of responsivity is achieved over both MWIR and LWIR regions, where the wavelength of the responsivity peak coincides with the dimple period of the 2-D PLA. The results provide direct evidence that a wideband wavelength selective IR sensor can be realized simply by design of the 2-D PLA surface structure without the need for vertical control in terms of gap or thickness. A pixel array where each pixel has a different detection wavelength could be developed for multicolor IR imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.