Abstract

Optimal photon management is a key challenge for photobioreactor design, since light gradients and varying spectral sensitivities between organisms result in uneven illumination and unused photons. This paper demonstrates wavelength specific scattering from plasmonic nano-patterned surfaces as a means of addressing the challenge of photon management in photobioreactors. Modular photobioreactors were constructed with different reflective substrates including arrays of plasmonic nanodisks, broadband reflectors, and untreated glass. It was found that the growth rate of cyanobacterium S. elongatus in photobioreactors equipped with a plasmonic substrate (R623 nm ∼ 35%) was enhanced by 6.5% compared to photobioreactors equipped with untreated glass. Furthermore, plasmonic reflectors showed a normalized power efficiency improvement of 52% over broadband reflectors. Wavelength-specific reflection from plasmonic reflectors increases the flux of useful light to cultures without sacrificing the full spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.