Abstract
One of the main concerns about EUV lithography is whether or not it can be extended to very high numerical aperture. In this paper, rigorous electromagnetic simulation is first used to show that there is an interesting waveguide effect occurring in the 4-nm feature size regime. An exact mathematical analysis is then presented to explain the effect observed in the simulation. This waveguide effect is applied to simulate the printing of 4-nm lines and spaces with excellent aerial-image contrast and peak intensity. The feasibility of EUV lithography for printing logic circuits containing general two-dimensional patterns with 4-nm feature size is also demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.