Abstract

We describe numerical simulations of spiral waves dynamics in the computational model of human atrial tissue with the Courtemanche-Ramirez-Nattel local kinetics. The spiral wave was initiated by cross-field stimulation protocol, with and without preliminary “fatigue” by rapid stimulation of the model tissue for a long time. In all cases the spiral wave has finite lifetime and self-terminates. However the mechanism of self-termination appears to depend on the initiation procedure. Spiral waves in the “fresh” tissue typically terminate after a few rotations via dissipation of the excitation front along the whole of its length. The dynamics of spiral waves in “tired” tissue is characterized by breakups and hypermeander, which also typically leads to self-termination but only after a much longer interval of time. Some features of the observed behaviour can not be explained using existing simplified theories of dynamic instabilities and alternanses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.