Abstract
Four wave mixing (FWM) is distinguished from other wavelength conversion techniques by its ability to simultaneously convert a number of input wavelength channels. In this case, optical signal-to-noise ratio (OSNR) is insufficient to describe the performance of the device as many effects are involved. A multiwavelength FWM model is used here to simulate a waveband converter (WBC). The numerical model predicts the waveform of the FWM product. Based on that output, the Q factor of the signal and the power penalty induced to the signal can be calculated to evaluate the performance of such a device. Meanwhile, an analytical model is used for the calculation of the signal power levels and the standard deviation of the fluctuation; hence, it describes the constituent effects-namely, the extinction ratio (ER) degradation, the OSNR degradation, the gain modulation (GM) related crosstalk, and interference. The model's validity is tested against the numerical results. To the best of the authors' knowledge, this is the first time that a numerical model and an analytical model are used to systematically investigate a WBC and to identify the specific effects and derive the design rules. These rules are tested in the experiment. Finally, a tunable WBC (TWBC) based on the dual-pump configuration is described and implemented experimentally
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.