Abstract

Wave transmission at low-crested coastal structures has been studied, based on physical model tests with trapezoidal impermeable, permeable and perforated structures. The differences between wave transmission at impermeable and permeable structures are relatively limited. For a perforated hollow structure with an impermeable vertical screen in the middle, the wave transmission is significantly less than for perforated structures without an impermeable vertical screen; the blocking of the orbital motion by the screen significantly reduces wave transmission. The effectiveness of an impermeable vertical screen to block the orbital motion and consequently reduce wave transmission assists designers of artificial reefs to design structures that reduce wave transmission. Empirical expressions based on a hyperbolic tangent function have been derived to describe the test results. For permeable structures also available data for emerged structures has been used in the analysis, and the newly introduced expression appears to be accurate for both submerged and emerged permeable structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.