Abstract
Wave data from five 12-13 MHz SeaSondes radars along the central California coast were analyzed to evaluate the utility of operational wave parameters, including significant wave height, period, and direction. Data from fourin situwave buoys served to verify SeaSonde data and independently corroborate wave variability. Hourly averaged measurements spanned distance is 150 km alongshore × 45 km offshore. Individual SeaSondes showed statistically insignificant variation over 27 km in range. Wave height inter-comparisons between regional buoys exhibit strong correlations, approximately 0.93, and RMS differences less than 50 cm over the region. SeaSonde-derived wave data were compared to nearby buoys over timescales from 15 to 26 months, and revealed wave height correlations and mean RMS difference of 53 cm. Results showed that height RMS differences are a percentage of significant wave height, rather than being constant independent of sea state. Period and directions compared favorably among radars, buoys, and the CDIP model. Results presented here suggest that SeaSondes are a reliable source of wave information. Supported by buoy data, they also reveal minimal spatial variation in significant wave height, period, and direction in coastal waters from ~45 km × ~150 km in this region of the central California coast. Small differences are explained by sheltering from coastal promontories, and cutoff boundaries in the case of the radars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.