Abstract
The wave propagation in periodic and disordered periodic piezoelectric rods is studied in this paper. The transfer matrix between two consecutive unit cells is obtained according to the continuity conditions. The electromechanical coupling of piezoelectric materials is considered. According to the theory of matrix eigenvalues, the frequency bands in periodic structures are studied. Moreover, by introducing disorder in both the dimensionless length and elastic constants of the piezoelectric ceramics, the wave localization in disordered periodic structures is also studied by using the matrix eigenvalue method and Lyapunov exponent method. It is found that tuned periodic structures have the frequency passbands and stopbands and localization phenomenon can occur in mistuned periodic structures. Furthermore, owing to the effect of piezoelectricity, the frequency regions for waves that cannot propagate through the structures are slightly increased with the increase of the piezoelectric constant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.