Abstract

The interaction between a regular wavetrain and a current possessing an arbitrary distribution of vorticity, in two dimensions, is considered for waves of finite amplitude. A numerical model is constructed, primarily for use in the finite depth regime, extending the work of Dalrymple (1973, 1977) and this is used to predict the wavelength and the particle velocities under the waves. These predictions agree very well with experimentally obtained data and the importance of the vorticity in the wave–current interaction is clarified. Amplitude and wavelength modulations are considered for finite amplitude waves on a slowly varying irrotational current; moderate agreement is found between theory and experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.