Abstract
In this paper, we study a generalized two-component Camassa–Holm system which can be derived from the theory of shallow water waves moving over a linear shear flow. This new system also generalizes a class of dispersive waves in cylindrical compressible hyperelastic rods. We show that this new system can still exhibit the wave-breaking phenomenon. We also determine the exact blow-up rate of such solutions. In addition, we establish a sufficient condition for global solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.