Abstract

AbstractAttenuation of ocean waves by ice is a crucial process of the interaction between waves and sea ice in marginal ice zone (MIZ), while such interaction can contribute to the retreating of sea ice in the Arctic. Based on the retrieved two‐dimensional ocean wave spectra by spaceborne Synthetic Aperture Radar, we investigated the attenuation of ocean waves in the MIZ in Svalbard and Greenland. The results show that the energy attenuation rate ranges from 0.126 × 10−4/m to 0.618 × 10−4/m. Quantitative analysis suggests that the attenuation rate is significantly related to wave height and peak wave period of coming waves. It is further found that the waves decay faster in the area with ice thickness exceeding 0.5 m. We compared the derived wave attenuation rates in the present study with those in previous studies based on in situ measurements, which reveals that waves are becoming less attenuated by sea ice in the Arctic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.