Abstract

Fluorescence-based probes have been the key interest of researchers working at the intersection of chemistry and biology. Such probes are crucial for strengthening our understanding about biochemical processes, drug delivery, and fluorescence-guided surgery. A challenge in this regard is optimizing the probe's aqueous solubility while maintaining its lipophilicity to allow cell membrane permeation. This review summarizes the recent progress in water-soluble fluorescence-based probes for different types of biomolecules including carbohydrates, proteins, enzymes, amino acids, neurotransmitters and biologically relevant reactive species. A comprehensive overview of the crucial parameters for such probes' design, potential sensing mechanism for specific analytes, and experimental conditions for sensing has been provided. Incorporation of hydrophilic functional groups, ionic charge(s), absorption-emission characteristics and pH-stability in biological window are pivotal to develop optimized probes with high sensitivity for target biomarkers. We further underline the limitations of the probes that hinder their translation to clinical research and also indicate major research gap in optimizing any single probe for a certain biomarker.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.