Abstract

AbstractAqueous Zn‐ion batteries have been considered as promising alternatives to Li‐ion batteries due to their abundant reserves, low price, and high safety. However, Zn anode shows poor reversibility and cycling stability in most conventional aqueous electrolytes. Here, a new type of aqueous Zn‐ion electrolyte based on ZnCl2–acetamide deep eutectic solvent with both environmental and economic friendliness has been prepared. The water molecule introduced in the “water‐in‐deep eutectic solvent” electrolyte could reduce the Zn2+ desolvation energy barrier by regulating Zn2+ solvation structure to promote uniform Zn nucleation. Zn anode shows improved electrochemical performance (≈98% Coulombic efficiency over 1000 cycles) in the electrolyte whose molar ratio of ZnCl2:acetamide:H2O is 1:3:1. The assembled full battery composed of phenazine cathode and Zn anode could stably cycle over 10 000 cycles with a high capacity retention of 85.7%. Overall, this work offers new insights into exploring new green electrolyte systems for Zn‐ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.