Abstract

The bicanonical statistical ensemble method has been used to calculate at the molecular level the free energy, entropy, and work of hydration of single-charged sodium cation in a model planar nanopore with structureless hydrophilic walls. The calculations have been performed in terms of a detailed many-particle model of intermolecular interactions calibrated with respect to experimental data on the free energy and enthalpy of the initial reactions of attachment in water vapor. In contrast to chlorine anion, at initial stages of formation, the hydration shell of sodium cation has a loose chain structure, which is reflected in the character of the interaction with pore walls and the behavior of entropy. Under the conditions of weakly hydrophilic walls, the system loses its stability; however, the stability remains preserved in a pore with strongly hydrophilic walls. Hydrophilic walls stabilize the system and shift the onset of hydration toward lower vapor pressures by several orders of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.