Abstract

Theoretical analysis of the CO(2) assimilation and water loss by single leaves suggests that the water use efficiency of C(4) species decreases as stomatal resistance increases. To confirm this hypothesis for a complete maize crop, results from computer simulations and a field experiment were compiled for varying stomatal resistances. A soil-plant-atmosphere model allowed simulations of the many simultaneous interactions between a crop canopy and its environment. The simulations for varying stomatal resistances clearly indicated that as stomatal resistance increased, water use efficiency of the maize crop decreased. The field experiment data also confirmed that water use efficiency was significantly decreased under water stress conditions when stomatal resistance increased. We concluded that management practices for maize, which induce moisture stress conditions resulting in increased stomatal resistance, reduce both crop photosynthetic productivity and water use efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.