Abstract
AbstractWater‐soluble polymer flocculants have been used to efficiently release entrapped water in oil sands tailings by bridging fine particles to create large heavier flocs which can then settle faster and release water more efficiently. Due to their initial interaction with the fine particles suspended in tailings, polymer nanofibres may perform better than their parent polymers because of the entire surface of the nanofibres being fully accessible to the fine particles. In this work, commercially available poly(acrylamide‐co‐diallyl dimethylammonium chloride) was chosen as a basis for this study. Initial settling rate, supernatant turbidity, water recovery, capillary suction time, and solids content were measured to determine the effect of polymer nanofibres on solid‐liquid separation. The solid forms of the polymer (either as nanofibre or powder) perform better than the polymer solution in each test, with optimum dosages of 5 wt% mature fine tailings (MFT) loading. Nanofibres could achieve settling rates of 60 m/h, while the other forms were only able to achieve 42 m/h. Additionally, the turbidity of the supernatant obtained after flocculation with nanofibres was 15 nephelometric turbidity units (NTU), while the polymer solution and powder produced turbidites of 162 NTU and 70 NTU, respectively. In addition, polymer nanofibres and powders generated larger flocs compared to the polymer solution, which produced small, homogenized flocs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.