Abstract
The fabrication of superhydrophobic surfaces and the studies on water flow characteristics therein are of great significance to many industrial areas as well as to science and technology development. Experiments were carried out to investigate slip characteristics of water flowing in circular superhydrophobic microtubes within laminar flow region. The superhydrophobic microtubes of stainless steel were fabricated with chemical etching–fluorination treatment. An experimental setup was designed to measure the pressure drop as function of water flow rate. For comparison, superhydrophilic tubes were also tested. Poiseuille number Po was found to be smaller for the superhydrophobic microtubes than that for superhydrophilic ones. The pressure drop reduction ranges from 8% to 31%. It decreases with increasing Reynolds number when Re<900, owing to the transition from Cassie state to Wenzel state. However, it is almost unchanged with further increasing Re after Re>900. The slip length in superhydrophobic microtubes also exhibits a Reynolds number dependence similarly to the pressure drop reduction. The relation between slip length and Darcy friction factor is theoretically analyzed with consideration of surface roughness effect, which was testified with the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.