Abstract

The flow of a saturated gas through a porous medium, partially occupied by a liquid phase, causes evaporation due to gas expansion. This process, referred to as flow-through drying, is important in a wide variety of natural and industrial applications, such as natural gas production, convective drying of paper, catalysts, fuel cells and membranes. X-ray imaging experiments were performed to study the flow-through drying of water-saturated porous media during gas injection. The results show that the liquid saturation profile and the rate of drying are dependent on the viscous pressure drop, the state of saturation of the gas and the capillary characteristics of the porous medium. During the injection of a completely saturated gas, drying occurs only due to gas expansion. Capillary-driven flow from regions of high saturation to regions of low saturation lead to more uniform saturation profiles. During the injection of a dry gas, a drying front develops at the inlet and propagates through the porous medium. The experimental results are compared with numerical results from a continuum model. A good agreement is found for the case of sandstone. The comparison is less satisfactory for the experiments with limestone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.