Abstract
This paper reviewed the key physical, chemical and biological water quality attributes of surface waters in New Zealand’s planted forests. The purpose was to: a) assess the changes in water quality throughout the planted forestry cycle from afforestation through to harvesting; b) compare water quality from planted forests with other land uses in New Zealand; and c) identify knowledge gaps and opportunities for future research. Afforestation of pasture land significantly improved a wide range of water quality attributes such as stream temperature, nutrient and sediment concentrations and microbial contamination within 4-6 years of planting. Water quality in mid-rotation to mature forests, a large proportion of the forestry cycle, was highly variable but characterised by cool water temperatures, low concentrations of sediment and nutrients, with aquatic invertebrate communities indicative of high water quality. Impacts of timber harvesting on water quality attributes were greatest when clear-cut harvesting up to the stream edge. Harvest impacts were mediated by the retention of intact riparian buffers and to a lesser extent by retention of moderate quantities of logging slash across small stream channels. Temporal and spatial factors influenced the magnitude of response to harvesting activities and duration of the recovery period. Land-use comparisons generally showed improving water quality from pasture to planted forest to indigenous forest. Continued research to identify management systems that mitigate impacts on water quality, particularly during harvesting, remains a priority. Consistent approaches to water quality monitoring will improve the ability to report on water quality in planted forests. Future water quality research in New Zealand’s planted forests needs to encompass emerging contaminants of national and international concern such as pesticides and pharmaceuticals. As New Zealand moves toward increasing productivity from planted forests, use of potential interventions such as intensified herbicide and fertiliser use, will need to be within sustainable freshwater limits. A future challenge is to quantify the economic value of freshwater ecosystems services provided by New Zealand’s planted forests. This review showed that with continued prudent stewardship and ongoing improvements in management practices, particularly during harvesting, New Zealand’s planted forests can provide a sustainable source of well-maintained and high quality water resources.
Highlights
Water quality in forests Clean fresh water is essential for terrestrial and aquatic life, and “water quality” is a term used to describe the physical, chemical, and biological characteristics of water (Carr and Neary 2008)
Biological attributes Underlying water quality attributes influenced by land use such as stream lighting, water temperature, sediment, organic matter and nutrients were key factors driving differences in primary productivity, community respiration, and biological community compositions between streams in forested and pasture catchments (Friberg et al 1997; Harding and Winterbourn 1995; Parkyn et al 2006; Quinn et al 1997; Young and Huryn 1999)
Abell et al.’s (2011) survey of 101 lakes across New Zealand showed that while high producing pasture land had the greatest effect on lake nutrient status, concentrations of total phosphorus (TP) were positively correlated with the percentage of planted forest in the catchment and exceeding the naturally high background rates of P associated with underlying volcanic geology
Summary
Water quality in forests Clean fresh water is essential for terrestrial and aquatic life, and “water quality” is a term used to describe the physical, chemical, and biological characteristics of water (Carr and Neary 2008). The use of freshwater fish as an indicator of water quality in New Zealand’s planted forest streams is limited, so this attribute has not been included in this review.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.