Abstract

A general electropolymerization/electro-oligomerization strategy is described for preparing spatially controlled, multicomponent films and surface assemblies having both light harvesting chromophores and water oxidation catalysts on metal oxide electrodes for applications in dye-sensitized photoelectrosynthesis cells (DSPECs). The chromophore/catalyst ratio is controlled by the number of reductive electrochemical cycles. Catalytic rate constants for water oxidation by the polymer films are similar to those for the phosphonated molecular catalyst on metal oxide electrodes, indicating that the physical properties of the catalysts are not significantly altered in the polymer films. Controlled potential electrolysis shows sustained water oxidation over multiple hours with no decrease in the catalytic current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.