Abstract
Molecular dynamics simulation was employed to investigate the diffusion behaviors of water molecules within a (5,5) carbon nanocoil (CNC) at different tensile strains, the length and coil diameter of CNC are 22 and 6.83 Ǻ, respectively. Condensed-phase, optimized molecular potentials for atomistic simulation studies were employed to model the interaction between atoms. The results show that the diffusion in the axial direction can be enhanced by the tensile strain and the water molecule flow can be blocked at a higher strain once the deformed areas appear at the higher strain. Moreover, the deformed (5,5) CNC at strain of 2.8 can recover its original structure at strain of 0, indicating that the adjustment of diffusion coefficient is repeatable by applying different strains in the axial direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.