Abstract
This study examined the effect of both separate and combined depletion of brain somatostatin and serotonin on acquisition of the water maze (WM) task. Naïve male Long-Evans rats received injections of p-chlorophenylalanine (PCPA; 500 mg/kg × 2) to deplete serotonin or cysteamine (90 or 200 mg/kg) to deplete somatostatin, or both treatments prior to spatial and reversal training in the water maze. Some rats first received Morris’ nonspatial pretraining to train them in the behavioral strategies that are required for successful spatial place learning in this task, prior to drug treatment and spatial training. A detailed behavioral analysis indicated that somatostatin or serotonin depletion alone caused little or no impairment in naïve animals. Depletion of both somatostatin and serotonin in naïve rats impaired performance, with differences in the impairments that depended on the dose of cysteamine. Nonspatially pretrained rats were not impaired. Thus, neither somatostatin nor serotonin alone is crucial for the water maze task, but impairments occur if both somatostatin and serotonin are depleted in naïve rats. The results indicate that some of the performance impairment was due to strategies impairment rather than a spatial place learning impairment. Depletion of both somatostatin and serotonin in naïve rats produces results comparable to the spatial navigation deficits seen in some Alzheimer patients and suggests that combinations of antagonist treatments may better model this disorder than single antagonist treatments do.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.