Abstract
Microplastics have recently been identified as one of the major contributors to environmental pollution. To design and control the biodegradability of polymer materials, it is crucial to obtain a better understanding of the aggregation states and thermal molecular motion of polymer chains in aqueous environments. Here, we focus on melt-spun microfibers of a promising biodegradable plastic, polyamide 4 (PA4), with a relatively greater number density of hydrolyzable amide groups, which is regarded as an alternative to polyamide 6. Aggregation states and thermal molecular motion of PA4 microfibers without/with a post-heating drawing treatment under dry and wet conditions were examined by attenuated total reflectance-Fourier transform infrared spectroscopy and wide-angle X-ray diffraction analysis in conjunction with dynamic mechanical analysis. Sorbed water molecules in the microfibers induced the crystal transition from a meta-stable γ-form to a thermodynamically stable α-form via activation of the molecular motion of PA4 chains. Also, the post-drawing treatment caused a partial structural change of PA4 chains, from an amorphous phase to a crystalline phase. These findings should be useful for designing PA4-based structural materials applicable for use in marine environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.