Abstract

We have measured the abundance and isotopic composition of water in apatites from several lunar rocks representing Potassium (K), Rare Earth Elements (REE), and Phosphorus (P) − KREEP − rich lithologies, including felsites, quartz monzodiorites (QMDs), a troctolite, and an alkali anorthosite. The H-isotope data from apatite provide evidence for multiple reservoirs in the lunar interior. Apatite measurements from some KREEP-rich intrusive rocks display moderately elevated δD signatures, while other samples show δD signatures similar to the range known for the terrestrial upper mantle. Apatite grains in Apollo 15 quartz monzodiorites have the lowest δD values measured from the Moon so far (as low as −749‰), and could potentially represent a D-depleted reservoir in the lunar interior that had not been identified until now. Apatite in all of these intrusive rocks contains <267ppm H2O, which is relatively low compared to apatites from the majority of studied mare basalts (200 to >6500ppm H2O). Complexities in partitioning of volatiles into apatite make this comparison uncertain, but measurements of residual glass in KREEP basalt fragments in breccia 15358 independently show that the KREEP basaltic magmas were low in water. The source of 15358 contained ∼10ppm H2O, about an order of magnitude lower than the source of the Apollo 17 pyroclastic glass beads, suggesting potential variations in the distribution of water in the lunar interior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.