Abstract

The water entry of a three-dimensional smooth body into initially calm water is examined. The body can move freely in its 6 d.f. and may also change its shape over time. During the early stage of penetration, the shape of the body is approximated by a surface of double curvature and the radii of curvature may vary over time. Hydrodynamic loads are calculated by the Wagner theory. It is shown that the water entry problem with arbitrary kinematics of the body motion, can be reduced to the vertical entry problem with a modified vertical displacement of the body and an elliptic region of contact between the liquid and the body surface. Low pressure occurrence is determined; this occurrence can precede the appearance of cavitation effects. Hydrodynamic forces are analysed for a rigid ellipsoid entering the water with 3 d.f. Experimental results with an oblique impact of elliptic paraboloid confirm the theoretical findings. The theoretical developments are detailed in this paper, while an application of the model is described in electronic supplementary materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.