Abstract

We have established conditions for stable triggering of the explosive breakup for heterogeneous water drops induced by immersion in high-temperature gas (air) at more than 800 K. The water drop heating is enhanced by small graphite solid particles of 2 × 2 × 1 mm, 2 × 2 × 2 mm and 2 × 2 × 3 mm inserted into drops. The properties of the graphite such as porous and layered structure, moisture content, and surface roughness play determining roles. Experiments show that heterogeneous water drops can boil during a short time and produce clouds of tiny droplets. Heating times of heterogeneous drops until the breakup do not exceed a few seconds and usually last for less than three. We have identified the main stages and the mechanism of heterogeneous drop heating, as well as vaporization at the internal interface and at the free surface of a drop. A high-speed video camera and the TEMA Automotive Software with a number of tracking algorithms are used for measurements. The analysis of experimental results shows that during the fragmentation of large heterogeneous drops at high temperatures, more than 100 small droplets are formed. The obtained data are a basis for novel technologies of effective fire extinguishing that involve the multiple growth of water evaporation area in a flame.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.