Abstract

Recently, it was observed that water droplets suspended in a nematic liquid crystal form linear chains (Poulin et al., Science 275, 1770 (1997)). The chaining occurs, e.g., in a large nematic drop with homeotropic boundary conditions at all the surfaces. Between each pair of water droplets a point defect in the liquid crystalline order was found in accordance with topological constraints. This point defect causes a repulsion between the water droplets. In our numerical investigation we limit ourselves to a chain of two droplets. For such a complex geometry we use the method of finite elements to minimize the Frank free energy. We confirm an experimental observation that the distance d of the point defect from the surface of a water droplet scales with the radius r of the droplet like d = 0.3 * r. When the water droplets are moved apart, we find that the point defect does not stay in the middle between the droplets, but rather forms a dipole with one of them. This confirms a theoretical model for the chaining. Analogies to a second order phase transition are drawn. We also find the dipole when one water droplet is suspended in a bipolar nematic drop with two boojums, i.e., surface defects at the outer boundary. Finally, we present a configuration where two droplets repel each other without a defect between them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.