Abstract

Single-atom catalysts (SACs) have been applied in various fields as they display extremely high utilization efficiency of catalytic sites. A majority of SACs prepared by high-temperature calcination suffer from poor water dispersion and lose of labelling groups. Herein cobalt SACs (CSACs) were synthesized with a solvothermal method by adopting hybridized MOFs Fe2O3/MIL-100(Fe) as the carriers to load cobalt atoms. Compared with original MOFs MIL-100(Fe), the carriers possess superior loading capacity, and the loading amount of cobalt element is up to 4.69 wt%. The implantation of cobalt atoms in hybridized MOFs Fe2O3/MIL-100(Fe) vastly improved the specific surface of the carriers for 68 times. CSACs at 1.0 μg mL−1 can catalyze H2O2 to generate numerous reactive oxygen species and enormously boost the chemiluminescent emission of luminol-H2O2 system up to 2297 times. The CSACs also exhibit satisfactory dispersion in aqueous medium. Benefiting from these attracting features, the CSACs were applied as sensitive signal probes for detecting carbendazim in Chinese medicinal herbs with a chemiluminescent immunoassay method. The dynamic range is 10 pg mL−1 - 50 ng mL−1 and the limit of detection is 1.8 pg mL−1. The proof-of-principle work paves a pathway to the exploitation of SACs as sensitive probes for tracing biological recognition events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.