Abstract

The chromophore of fluorescent proteins is formed by an internal cyclization of the tripeptide 65SYG67 fragment and a subsequent oxidation. The oxidation is slow – the kinetics of this step is presumably improved in fast maturing GFPs. Water molecules can aid in the chromophore formation. We have used 50 ns molecular dynamics simulations of the mature and immature forms of avGFP and TurboGFP to examine the diffusion of water molecules in-and-out of the protein β-barrel. Most crystal structures of GFPs have well-structured waters within hydrogen-bonding distance of Glu222 and Arg96. It has been proposed that they have an important role in chromophore formation. Stable waters are found in similar positions in all simulations conducted. The simulations confirm the existence of a pore that leads to the chromophore in the rapidly maturing TurboGFP; decreased water diffusion upon chromophore formation; and increased water diffusion due to the pore formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.