Abstract

Insertion devices (wigglers and undulators) proposed for synchrotron radiation sources will produce up to 10 kW/cm 2 of thermal loading. In a double crystal monochromator, the first crystal must absorb nearly all of this output power, as it diffracts the desired wavelength to the second crystal. Storage rings currently projected or under construction produce heat loads of this intensity and thus require significantly improved optical element cooling methods to preserve the spectral quality of the output radiation. As beam intensities reach these higher levels, analysis of the thermal performance of passive and actively cooled optical elements becomes more and more critical because such elements are a cost effective means for producing a cooled crystal that performs to its design specifications the first time it is installed in the beamline. The Rocketdyne Division of Rockwell International is applying the experience gained in high energy laser optics research (the design of cooled IR and UV optical components for free electron lasers) to the problems of cooled X-ray monochromator crystals and grazing incidence VUV optics. In this paper, a set of first order parametric calculations and a second order finite element calculation were performed to determine surface temperature rise, coolant pressure drop and surface distortion in a single crystal silicon heat exchanger with heat loads of 100 to 550 W/cm 2 . Two different heat exchanger designs (microchannels and pin post cell) and two different coolants (water and liquid gallium) were analyzed to assess performance advantages of each.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.