Abstract

Aqueous core–shell latexes were synthesized through two-step emulsion copolymerization of vinylidene chloride (VDC) with ethyl acrylate (EA) and butyl acrylate (BA), respectively. First, seed latexes of EA-VDC85 copolymers with 85% VDC content were prepared by the binary emulsion copolymerization of VDC with EA. Subsequently, EA-VDC85 seed latexes were employed in the seed emulsion copolymerization of VDC with BA and the resulting BA-VDC80 copolymers with 80% VDC content covered onto EA-VDC85 seed latexes to form the core–shell latexes. Transmission electron microscopy and dynamic light scattering characterization demonstrated that the size and size uniformity of seed latexes were influenced markedly by the content of emulsifiers in the copolymerization, and higher emulsifier content led to smaller and more uniform latexes. Furthermore, only the utilization of homogeneous seed latexes in the seed emulsion polymerization could lead the majority of the formed latexes to bear the core–shell structure. These ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.