Abstract

We report measurements of the attachment rates of water molecules onto mass-selected cationic pyrene clusters for size from n = 4 to 13 pyrene units and for different collision energies. Comparison of the attachment rates with the collision rates measured in collision-induced dissociation experiments provides access to the values of the sticking coefficient. The strong dependence of the attachment rates on size and collision energy is rationalized through a model in which we use a Langevin-type collision rate and adjust on experimental data the statistical dissociation rate of the water molecule from the cluster after attachment. This allows us to extrapolate our results to the conditions of isolation and long time scales encountered in astrophysical environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.