Abstract

Water activity (aw) is a major factor affecting pathogen heat resistance in low-moisture foods. However, there is a lack of data for aw at elevated temperatures that occur during actual thermal processing conditions, and its influence on thermal tolerance of pathogens. The objective of this study was to gain an in-depth understanding of the relationship between temperature-induced changes in aw and thermal resistance of Salmonella in all purpose flour and peanut butter at elevated temperatures (80 oC). Equilibrium water sorption isotherms (water content vs. water activity) for all purpose wheat flour and peanut butter over the range of 20 to 80°C were generated using a vapor sorption analyzer and a newly developed thermal cell. The thermal resistance (D80-values) of Salmonella in all purpose wheat flour and peanut butter with initial aw of 0.45 (measured at room temperature, ~20°C) was determined via isothermal treatment of small (<1g) samples. When increasing sample temperature from 20 to 80°C in sealed cells, the aw of all purpose flour increased from 0.45 to 0.80, but the aw of peanut butter decreased from 0.45 to 0.04. The corresponding estimated D80-values of Salmonella in all purpose flour and peanut butter with 20 oC aw of 0.45 were 6.9±0.7min and 17.0±0.9min, respectively. The significantly (P<0.05) higher D80-value of Salmonella in peanut butter than in all purpose flour may be partially attributed to the reduced aw in peanut butter in comparison to the increased aw in all purpose flour at 80°C. The improved understanding of temperature-induced changes in aw of low-moisture products of different composition provides a new insight into seemly unpredictable results, when using heat treatments to control Salmonella in such food systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.