Abstract

Around half of the energy consumed in aluminum production is lost as waste heat. Approximately 30–45% of the total waste heat is carried away by the exhaust gas from the smelter and is the most easily accessible waste heat stream. Alcoa Fjarðaál in east Iceland produces 350 000 tons annually, emitting the 110 °C exhaust gas with 88.1 MW of heat, which contains 13.39 MW exergy. In this study, three scenarios, including organic Rankine cycle (ORC) system, heat supply system and combined heat and power (CHP) system, were proposed to recover waste heat from the exhaust gas. The electric power generation potential is estimated by ORC models. The maximum power output was found to be 2.57 MW for an evaporation temperature of 61.22 °C and R-123 as working fluid. 42.34 MW can be produced by the heat supply system with the same temperature drop of the exhaust gas in the ORC system. The heat requirement for local district heating can be fulfilled by the heat supply system, and there is a potential opportunity for agriculture, snow melting and other industrial applications. The CHP system is more comprehensive. 1.156 MW power and 23.55 MW heating capacity can be produced by CHP system. The highest energy efficiency is achieved by the heat supply system and the maximum power output can be obtained with the ORC system. The efficiency of energy utilization in aluminum production can be effectively improved by waste heat recovery as studied in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.