Abstract

A route to waste cooking oil (WCO) transesterification to produce biodiesel using sulfonated polyphenylsulfone (S-PPS) and blends of polyphenylsulfone (PPS) and sulfonated polyphenylsulfone (PPS:S-PPS) as catalytic membranes was tested. Thin catalytic membranes from S-PPS and PPS:S-PPS presented a good balance between their ion exchange capacity (IEC), swelling degree, and weight loss after crosslinking. In particular, the crosslinked dense membrane with 56% sulfonation degree PPS:S-PPS 56 (MD 3 C) that presents IEC value 1.00 ± 0.02 meq H+/g and 328.37% swelling degree in methanol, shows the best balance. MD 3 C membrane transesterification reaction using WCO reached 86% biodiesel conversion with a WCO feedstock containing 0.24% water, 68 g/100 g of iodine value and 93% triglycerides. The use of S-PPS membrane acid-catalyzed biodiesel production from WCO is a promising and cleaner solution for preventing water and soil pollution with an added value. Further test should be performed to determine catalytic membrane stability, number of catalytic activity cycles and evaluate the sustainability of the PPS:S-PPS catalytic membranes for biodiesel production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.