Abstract

The future risk of tropical cyclones (TCs) strongly depends on changes in TC frequency, but models have persistently produced contrasting projections. A satisfactory explanation of the projected changes also remains elusive. Here we show a warming-induced contraction of tropical convection delays and reduces TC formation. This contraction manifests as stronger equatorial convection and weaker off-equatorial convection. It has been robustly projected by climate models, particularly in the northern hemisphere. This contraction shortens TC seasons by delaying the poleward migration of the intertropical convergence zone. At seasonal peaks of TC activity, the equatorial and off-equatorial components of this contraction are associated with TC-hindering environmental changes. Finally, the convection contraction and associated warming patterns can partly explain the ensemble spread in projecting future TC frequency. This study highlights the role of convection contraction and provides motivation for coordinated research to solidify our confidence in future TC risk projections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.