Abstract

High-order finite-difference schemes are less dispersive and dissipative but, at the same time, more isotropic than low-order schemes. They are well suited for solving computational acoustics problems. High-order finite-difference equations, however, support extraneous wave solutions which bear no resemblance to the exact solution of the original partial differential equations. These extraneous wave solutions, which invariably degrade the quality of the numerical solutions, are usually generated when solid-wall boundary conditions are imposed. A set of numerical boundary conditions simulating the presence of a solid wall for high-order finite-difference schemes using a minimum number of ghost values is proposed. The effectiveness of the numerical boundary conditions in producing quality solutions is analyzed and demonstrated by comparing the results of direct numerical simulations and exact solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.