Abstract

BackgroundWalking biomechanics are commonly affected after anterior cruciate ligament reconstruction and differ compared to uninjured controls. Manipulating task difficulty has been shown to affect the magnitude of walking impairments in those early after knee surgery but it is unclear if patients in later phases post-op are similarly affected by differing task demands. Here, we evaluated the effects of manipulating walking speed on between-limb differences in ground reaction force and knee biomechanics in those with and without anterior cruciate ligament reconstruction. MethodsWe recruited 28 individuals with anterior cruciate ligament reconstruction and 20 uninjured control participants to undergo walking assessments at three speeds (self-selected, 120%, and 80% self-selected speed). Main outcomes included sagittal plane knee moments, angles, excursions, and ground reaction forces (vertical and anterior-posterior). FindingsWe observed walking speed differentially impacted force and knee-outcomes in those with anterior cruciate ligament reconstruction. Between-limb differences increased at fast and decreased at slow speeds in those with anterior cruciate ligament reconstruction while uninjured participants maintained between-limb differences regardless of speed (partial η2 = 0.13–0.33, p < 0.05). Anterior cruciate ligament reconstruction patients underloaded the surgical limb relative to both the contralateral, and uninjured controls in GRFs and sagittal plane knee moments (partial η2 range = 0.13–0.25, p < 0.05). InterpretationOverall, our findings highlight the persistence of walking impairments in those with anterior cruciate ligament reconstruction despite completing formal rehabilitation. Further research should consider determining if those displaying larger changes in gait asymmetries in response to fast walking also exhibit poorer strength and/or joint health outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.