Abstract

Understanding how behavior is controlled requires that modeling be combined with behavioral, electrophysiological, and neuroanatomical investigations. One problem in studying motor systems is that they have considerable autonomy; they are not driven solely by inputs. Choosing walking as the object of study is promising because it is a comparably simple and easy-to-elicit behavior, but it exhibits the special feature of most motor behavior—the interaction between central, autonomous components and peripheral, sensory influences. This article reviews the control of walking in stick insects, beginning with behavioral studies of single-leg control and the interleg coordinating mechanisms. These behavioral results are tested and supported by modeling the control system in an artificial neural network computer simulation and a six-legged robot. Supporting neurophysiological results also are considered. Together, the results indicate that the high flexibility and adaptability is based on a simple distributed control structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.