Abstract

We prove that for all unconfounded balanced mixed models of the analysis of variance, estimates of variance components parameters that maximize the (restricted) Gaussian likelihood are consistent and asymptotically normal--and this is true whether normality is assumed or not. For a general (nonnormal) mixed model, we show estimates of the variance components parameters that maximize the (restricted) Gaussian likelihood over a sequence of approximating parameter spaces (i.e., a sieve) constitute a consistent sequence of roots of the REML equations and the sequence is also asymptotically normal. The results do not require the rank p of the design matrix of fixed effects to be bounded. An example shows that, in some unbalanced cases, estimates that maximize the Gaussian likelihood over the full parameter space can be inconsistent, given the condition that ensures consistency of the sieve estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.