Abstract

This article addresses two modelling aspects of wind turbine aerofoil aerodyna-mics based on the solution of the Reynolds-averaged Navier—Stokes (RANS) equations. One of these is the effect of an a priori method for structured grid adaptation aimed at improving the wake resolution. The presented results emphasize that the proposed adaptation strategy greatly improves the wake resolution in the far field, whereas the wake is completely diffused by the non-adapted grid with the same number and spacing patterns of grid nodes. The proposed adaptation approach can be easily included in the structured generation process of both commercial and in-house-structured mesh generators. The other numerical aspect examined herein is the impact of particular choices for turbulence modelling on the predicted solution. This includes the comparative analysis of numerical solutions obtained by using different turbulence models, and also aims at quantifying the solution inaccuracy arising from not modelling the laminar-to-turbulent transition. It is found that the drag forces obtained by considering the flow as transitional or fully turbulent may differ by 50 per cent. All these issues are investigated using a special-purpose hyperbolic grid generator and two multi block structured finite volume RANS codes. The numerical experiments consider the flow field past a wind turbine aerofoil for which an exhaustive campaign of steady and unsteady experimental measurements was conducted. The predictive capabilities of the CFD solvers are validated by comparing experimental data and numerical predictions for selected flow regimes. The incompressible analysis and design code XFOIL is also used to support the findings of the comparative analysis of numerical RANS-based results and experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.