Abstract

Adhesive wafer-level bonding is an excellent solution to meet the stringent requirements in micro-electro-mechanical systems (MEMS) packaging, one of the challenges in MEMS manufacturing, in a steadily growing micro-systems market. A range of bonding processes for commercially available substrate bonders have been developed, which apply global heating during the bonding procedure. This article, however, describes an approach where heating is kept to a minimum by combining the merits of laser joining, a truly localised heating technique, and adhesive wafer-level bonding. This unique bonding technique, which enables the use of temperature-sensitive materials within the package, is demonstrated for bonding of silicon to glass – materials commonly used in MEMS fabrication – with a benzocyclobutene (BCB) intermediate bonding layer. As a proof of concept for wafer-level packaging, bonding of two simplified patterns is demonstrated, one with five individual samples on the same wafer, and the other with nine samples. To verify the influence of this innovative bonding technique on the quality of the seal the devices are shear force tested and the results are compared with those of devices packaged at chip-level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.