Abstract

Vacuum UV (VUV) technologies have recently attracted high interest due to their high efficacy in generating reactive oxygen species (ROS). To date, no systematic study of the modes of action of the integrated VUV/Fe(II)/H2O2 process against contaminants elimination exists; the present study reports the oxidation of MTBE in a new light-assisted Fenton-process, by employing either narrowband UVC (254 nm) or VUV (185 and 254 nm) irradiation, in a comparative evaluation. The processes under investigation were the UVC- or VUV/Fe(II)/H2O2 sensitized ones and their constituents, i.e. Fe(II)/H2O2, VUV, VUV/Fe(II), VUV/H2O2, VUV/Fe(II)/H2O2, as well as the UVC, UVC/H2O2 and UVC/Fe(II)/H2O2. We scrutinize the operational parameters of the VUV-assisted process, its enhancements and synergies, comparison with the UVC-based ones, as well as their inflicted pathways towards MTBE degradation. Complete degradation and 87.8% mineralization of 50 mg/L MTBE was achieved in the VUV/Fe(II)/H2O2 process (0.9 mM Fe(II) and 3 mM H2O2), at near-neutral pH (reaction times: ∼30 and 60 min, respectively). Irradiation with VUV light was found to act synergistically and in high kinetic rates enhancement compared to the UVC source, sensitizing the Fenton process for effective oxidation of MTBE in the aqueous solution. A scavenger study and degradation by-products investigation has been performed, leading to a mechanistic pathway proposition, elucidating MTBE degradation. The VUV/Fe(II)/H2O2 process demonstrated potential applicability in the field since it could efficiently treat (100% degradation and 86.4% mineralization) groundwater spiked with MTBE, operated either under batch or continuous-flow mode. The findings clearly indicates the VUV-assisted Fenton as an emerging and viable technology for field application to treat the MTBE-contaminated effluents or waters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.