Abstract

BackgroundIndispensible amino acids (IAAs) are used by the body in different proportions. Most animal-based foods provide these IAAs in roughly the needed proportions, but many plant-based foods provide different proportions of IAAs. To explore how these plant-based foods can be better used in human nutrition, we have created the computational tool vProtein to identify optimal food complements to satisfy human protein needs.MethodsvProtein uses 1251 plant-based foods listed in the United States Department of Agriculture standard release 22 database to determine the quantity of each food or pair of foods required to satisfy human IAA needs as determined by the 2005 daily recommended intake. The quantity of food in a pair is found using a linear programming approach that minimizes total calories, total excess IAAs, or the total weight of the combination.ResultsFor single foods, vProtein identifies foods with particularly balanced IAA patterns such as wheat germ, quinoa, and cauliflower. vProtein also identifies foods with particularly unbalanced IAA patterns such as macadamia nuts, degermed corn products, and wakame seaweed. Although less useful alone, some unbalanced foods provide unusually good complements, such as Brazil nuts to legumes.Interestingly, vProtein finds no statistically significant bias toward grain/legume pairings for protein complementation. These analyses suggest that pairings of plant-based foods should be based on the individual foods themselves instead of based on broader food group-food group pairings. Overall, the most efficient pairings include sweet corn/tomatoes, apple/coconut, and sweet corn/cherry. The top pairings also highlight the utility of less common protein sources such as the seaweeds laver and spirulina, pumpkin leaves, and lambsquarters. From a public health perspective, many of the food pairings represent novel, low cost food sources to combat malnutrition. Full analysis results are available online at http://www.foodwiki.com/vprotein.

Highlights

  • The human body requires a small set of indispensible amino acids (IAAs) in a defined proportion

  • Single food analysis Each single food was analyzed to determine the mass of the food required to obtain an equivalent of 1 gram of high biological value (BV) protein as defined by the 2005 dietary reference intake (DRI) pattern

  • Our analyses identified a large number of single and pairs of plant-based foods that satisfy the 2005 DRI Indispensible amino acids (IAAs) pattern

Read more

Summary

Introduction

The human body requires a small set of indispensible amino acids (IAAs) in a defined proportion. Humans have overcome imbalances in plant-based foods by consuming foods with complementary IAA patterns. Historic examples of these complements include beans and corn in the Americas [2], or rice and soy in Asia [3,4]. If the pairing is suboptimal but still complementary (Fig. 1C,D), consuming the two foods together yields more biological value than each food alone, but leaves a varying quantity of amino acids in excess, resulting in less efficient combinations. To explore how these plant-based foods can be better used in human nutrition, we have created the computational tool vProtein to identify optimal food complements to satisfy human protein needs

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.