Abstract

We report the first measurements of current-voltage ( I–V) characteristics of discrete rings of Josephson junctions. As I is increased, resonant steps appear in the I–V curve, due to phase-locking between a propagating, trapped vortex and the linear waves excited in its wake. Unexpectedly, the phase velocity of the linear waves, not the group velocity, is the physically important quantity and mode numbers outside the Brillouin zone are relevant. Our measurements show that away from the resonant steps, a single vortex can move in an environment with very little damping, making the discrete one-dimensional ring a well-defined model system for the study of ballistic and quantum vortex experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.